Lesson Two

What about crd1°?

You've Probably noticed that despite the various formulas introduced till now you cannot determine the value of $crd1^\circ$... Ptolemy has also faced this problem. Without this value it is impossible to move forward and get the remaining chord table ... Ptolemy found a solution that he proved rigorously using geometric arguments.

Theorem 1 deduction with support in GeoGebra

- 1. Open the link: http://www.geogebratube.org/student/m123345
- 2. Animate the selector.
- 3. Observe the table that is being generated.
 - a) Check what happens when $\beta = 1^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ} \text{ e } 89^{\circ}$:
 - compare the values of $\boldsymbol{\beta}$ with the values of $\boldsymbol{\alpha}$
 - compare the values of $crd\beta$ with the values of $crd\alpha$;
 - compare the ratios between angles with the ratios between chords.
 - b) Does the relationship between angles and chords, previously observed, occur for any value of β ?
 - c) Write a conjecture for a relation expressing the ratios between angles and their respective chords.

Extension: Prove the result which allows the determination of the $crd1^{\circ}$.

Application: determining crd1°

- 1. Apply Theorem 1 to $\alpha = 1\frac{1}{2}^{\circ}$ and $\beta = 1^{\circ}$. Obtain a lower bound for $crd1^{\circ}$.
- 2. Apply Theorem 1 to $\alpha = 1^{\circ}$ and $\beta = \frac{3}{4}^{\circ}$. Obtain a upper bound for $crd1^{\circ}$.
- 3. Conclude that $crd1^{\circ} = 1; 2,50$ with two sexagesimal places.
- 4. From the previous value determine $crd\left(\frac{1}{2}\circ\right)$.

Generating the missing chords

Using the value of $crd1^{\circ}$, complete the remaining chord table.

Comparison between Ptolemy sine values and the current ones

- 1. Open the link: http://www.geogebratube.org/student/m123376
- 2. Animate angle α and observe the values that are generated in the spreadsheet.
- 3. Observe the last column of the Excel worksheet. What is the minimum accuracy of the values of Ptolemy?

Sinusoidal and polynomial regression from some values of Ptolemy's table, using GeoGebra

- 1. Open the link: http://www.geogebratube.org/student/m123394
- 2. Starting from the 23 angles of Ptolemy's table (θ) and the respective ratios between chords and $120 \cdot ((crd(\theta))/120)$, one can get $\sin\left(\frac{\theta}{2}\right)$. In the file Cartesian referential, ordered pairs $\left(\theta, \sin\left(\frac{\theta}{2}\right)\right)$ are marked:
 - select the check boxes to get the sinusoidal and polynomial regressions;
 - select the check boxes to get the difference function between the sine function and each of the regressions constructed.
- 3. What is in your opinion the better regression? Justify your choice.